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On the radiation and scattering of short surface waves. 

Part 2 
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A short-wave asymptotic analysis is undertaken for problems concerned with 
the radiation and scattering of surface waves by a cylinder whose cross-section 
S intersects the free surface normally. It is assumed that S is locally smooth 
and convex a t  the two intersection points with the fluid, which may be of infinite 
or finite depth. For both the scattering and radiation problem, a matched 
expansion technique is used to provide asymptotic estimates, in terms of rela- 
tively simple wave-free limit potentials, for the amplitudes of the surface wave 
trains that propagate from S. Explicit details are given for some particular geo- 
metries, confirming and extending earlier results. The method can, in principle, 
be extended to deal with other geometries. 

1. Introduction 
Problems concerned with the scattering and radiation of short surface waves 

by partially immersed obstacles have received the attention of many authors. 
The aim of the present work is to develop a relatively simple formal procedure 
for obtaining an asymptotic approximation for the solution throughout the whole 
flow field, with particular emphasis on an estimate for the amplitude of the sur- 
face waves that propagate away from the obstacle S. 

It is desirable that such a procedure should provide the required information 
for a variety of obstacles and in a direct manner. The formal method of matched 
expansions, whose application to surface wave problems has been described in an 
earlier report (Leppington 1972), provides such a technique. Its success rests 
upon the reasonable assumption that the flow field can be divided into different 
regions in which the solution has different asymptotic forms, the argument 
running briefly as follows. 

In  the short-wave limit e 4 a, in which the wavelength 2ne of surface waves 
is small compared with a characteristic dimension a of the obstacle S, the free- 
surface condition can be simplified by formally letting e +- 0 to obtain a first 
approximation $ w #,, for the velocity potential (there may be a scaling factor, 
that depends on e, multiplying #,,). This outer approximation is assumed to pro- 
vide an asymptotic estimate for # at distances of many wavelengths from the 
free surfaae. 
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At points very close to the intersection of the obstacle S with the free surface 
on the other hand, a different sort of approximation is made. For in this inner 
region, within a small fraction of an obstacle dimension a from the intersection 
point, the potential will certainly be sensitive to the waviness of the surface, but 
will depend only on the local geometry of S .  This suggests that the potential will 
be a slowly varying function of variables that are scaled with respect to wave- 
length. The formal procedure for exploiting this assumption is described in the 
main text, where it is shown how to calculate the amplitude of the surface waves 
that are formed at the outer extremities of such inner regions. Finally, the outer 
region is extended by continuing the surface wave trains, valid initially only 
within the inner regions, along the surfaces towards x = -t co. This extension of 
the outer region, to include the whole surface-wave region, is discussed more 
fully in part I of this work (Leppington 1972). 

With the addition of these surface waves, the outer estimate is assumed valid 
at distances 9 IZ from the intersection of obstacle with the free surface, and the 
inner expansions are assumed valid a t  distances G a from the intersection points. 
The two approximations therefore have a common region of validity, in which 
they must be asymptotically equivalent in some sense, under the assumed 
condition that E < a. Such a procedure inevitably involves difficulties in assign- 
ing boundary conditions to the outer and inner approximating functions. For the 
outer potential is not valid near the intersection points and has unknown boun- 
dary conditions there. Similarly, the inner potentials satisfy unknown conditions 
at infinity. Matching conditions of the type proposed by Van Dyke (1964, p. 90) 
provide a convenient means of exploiting the necessary equivalence of the two 
different approximations in their common region of validity, and complete the 
missing specifications for the two expansions. 

The precise shape of the obstacle X near the intersection points will obviously 
have a crucial bearing on the inner potentials. Part 1 has dealt with geometries 
that are locally horizontal near their end points; this leads to inner approxima- 
tions that are related to potentials involving the presence of a semi-infinite dock. 
Here our attention is confined to the case in which S is two-dimensional, locally 
convex and vertical at  its ends. Thus the inner potentials involve problems of 
waves produced by a plane vertical wave maker. 

The semi-circular cylinder, in a fluid of infinite depth, falls into this category, 
and has been dealt with rigorously by Ursell (1953) for the radiation problem 
and by Ursell (1961) for the scattering problem. In each case, the problem was 
reduced to that of an integral equation that is amenable to solution by iteration. 
The radiation problem has also been solved rigorously for more general geo- 
metries by Rhodes-Robinson (1970a, b, 1972), again using integral equation 
methods. He considers finite depth h, with any convex cylinder whose cross- 
section S is subject to the oonstraints that S intersects the surface normally, 
with particular emphasis on the case when S ha.s fmite radius of curvature at the 
ends. 

Consideration is given here to the more general situation in which the cross- 
section S may have infinite radius of curvature at  the intersection points. Thus if 
(2, y) axes are chosen so that the free surface is on the plane y = 0 with the y axis 
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pointing into the fluid and intersection points at  ( k a, 0) ,  then S has the local form 

near x = u, with 2 < N < 00. Near the other end ( - u, 0) a similar expansion for 
x + a has N replaced by M .  The indices N and M give a measure of the ‘ steepness ’ 
of S near the points ( f. u, 0 ) ,  since S becomes flatter at  the ends as N and M 
increase. As might be expected, the radiation and scattering properties of the 
obstacle S depend crucially on the values of these integers. The case of a plane 
intersecting boundary requires special treatment and is not dealt with here. 

A general analysis is given, in $3 2 and 3, for the scattering problem, in which a 
travelling wave train is incident upon S, and leads to a transmission coefficient of 
order e N f M ,  with a scale factor that depends on the precise geometry of S. Ex- 
plicit details are given in $4 for the case of infinite depth with S a semi-circle, 
semi-ellipse, or a semi-circle with a vertical keel. The result for the semi-circle 
is in agreement with that obtained rigorously by Ursell, thus giving some sup- 
port to the more general predictions made. A generalization to higher order terms 
is briefly indicated for the semi-circle. 

For the radiation problem of 0 5, in which S undergoes a time-periodic heaving 
motion, amplitude coefficients of order P and eM are obtained for the waves 
propagated towards x = 00 and x = -a. These results are in agreement with 
those predicted by Holford (1965) and proved rigorously by Rhodes-Robinson 
for N = 2, and with those predicted by the latter author for N = 4. 

A further generalization to finite, locally variable depth is described in $6 .  
Finally, it is remarked that, although this matching procedure is not rigorous, 

it  does provide a systematic method for solving a wide class of problems, to any 
order of accuracy in principle, that would be difficult to deal with by other means. 
For the more difficult transmission problem, Ursell’s (1961) work on the semi- 
circular cylinder remains the only rigorous treatment; this involves finding an 
asymptotic estimate #o for the potential q5 on the body S, and then requires the 
very delicate task of estimating the transmission coefficient p in terms of an 
integral of q50 weighted by some Green’s function, evaluated over S. I n  spite of 
the rapid oscillatory nature of such integrals, Ursell finds an efficient integral 
formula for p, evaluatesit asymptotically and shows that the error, due to higher 
order terms in q5, is negligible. The need for such a careful analysis was shown 
by giving another (less efficient) integral formula for f’, in which the substitution 
# N q50 does not give the right answer. 

This difficult issue does not arise in the formal matching procedure. For 
instead of having to calculate p in terms of the potential # on S, the critical 
regions near the intersection points ( u,O) are examined directly, in great detail, 
by means of magnified variables scaled with respect to wavelength. 
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FIGURE 1. The co-ordinate systems. The curve 9 is vertical and locally convex 
at the two intersection points (z, y) = ( &a, 0). 

2. Formulation of the transmission problem 
A cylinder is partially immersed, with its generators horizontal, in a fluid of 

infinite extent. Co-ordinates are chosen so that the z direction is along the axis of 
the cylinder, with y pointing downward into the fluid, and the origin chosen so 
that the cross-sectional boundary S intersects the free surface at  the points 
(2, y) = ( _+ a, 0) .  It is assumed that S is locally convex and has vertical tangents 
at  these points (see figure 1) .  

Near x = a, the curve S has the form 

x-a = -f(Y), Y < Yo, (2.1) 

where 

with N 2 to  ensure the vertical tangency. If N = 2, then S has a finite radius 
of curvature l/a, at the point of intersection, and S has zero curvature there 
if N > 2. 

Similarly, the curve near the other point of intersection is given by 

x+a =f,(Y), Y < Yo, (2.3) 

where 

As one might expect, the reflexion and transmission properties of X depend 
crucially on the values of M and N ;  as M and N increase, the intersections be- 
come more vertical and the reflexion gets closer to being total, with less trans- 
mission. 

The cylinder S is held fixed and is irradiated by an incident wave train of poten- 
tial 9!{$i(x, y) exp ( - iwt)},  where 

(2.5) 
here w is the angular frequency and 8 = g/w2 gives a measure of the length of the 
travelling waves. The time factor exp ( - iwt ) ,  which occurs throughout, will 
be suppressed. 

The total potential 9!{$(x, y) exp ( - iwt )}  induced by the incident wave is 
specified by the following linearized equations : 

$i = exp { - i(x - a)/€ - y/e}; 

($+$) q5 = 0 in the fluid, 
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$ - t ~ r ) ~  = o for y = 0,IxI > a, (2.7) 

a$/& = 0 on 8, (2 .8 )  

where $u means a$/ay and n is the outward normal from S. In addition we require 
$ to be finite a t  the ends ( & a, 0 ) )  and a radiation condition to ensure that the 
scattered waves travel outwards. Thus 

$ - $i - 2 exp {i(x +a)/€ - y / ~ }  as x --f 00 (2.9) 

and $ - Fexp{-i(x-a)/e-y/e) as x -+ -co. (2.10) 

It has been shown in part 1 that, apart from additional wave-free terms, the 
formulae (2.9) and (2.10) hold in the extended domains (x T a)/€ -+ 00. The con- 
stants 2 and are unknowns of the problem. Our aim is to  describe the 
potential field and, in particular, to  estimate the constants and p, in the 
short-wave asymptotic limit E --f 0. 

Following the ideas described in a related dock problem in part 1, the fluid 
domain is divided into overlapping regions in which different asymptotic 
approximations are appropriate. 

The outer reg ion consists of that part of the fluid that is many (smaI1) wave- 
lengths from the free surface. To obtain a first approximation r)  - g(s )  $o in this 
region, where g ( 6 )  is a scale factor to be found, we formally take E +- 0 in the 
boundary condition (2.7); the harmonic function Qo must then satisfy the homo- 
geneous conditions 

a$,/an = 0 on S; 

$o = 0 for y = 0,IxI > a; $o -+ 0 a t  infinity. 

Such a potential cannot carry surface waves and is clearly not valid near the 
free surface. In  order to remedy this defect, formulae (2.9) and (2.10) show that 
we must add surface wave trains whose amplitudes are to be determined. For the 
present, it is simply noted that $o is not valid within a few wavelengths of the 
surface. 

It is also important to note that the homogeneous problem (2.11) for $o must 
contain singularities at one or both of the ends (x, y) = ( & a, 0). Since these points 
lie outside the region of validity of qh0, singularities are quite admissible and are 
to be smoothed off by solutions that are valid near the end-points. 

Near to the points of intersection ( & a, O ) ,  the waviness of the free surface 
cannot be ignored, but the geometry of the problem can be simplified. For if the 
limit €/a --f 0 is interpreted as keeping e fixed and letting a -+ co, it is clear that 
the solution will be scaled on the length scale E and will depend only on the ZocaZ 
geometry of S. Dealing with the right inner region,  within a small fraction of a 
diameter 2a from the point (a, 0 ) ,  for example, this idea is formalized by rescaling 
the co-ordinates according to the transformation 

} (2.11) 

x = a+cX, y = E Y ,  $(x, y) = @ ( X ,  Y ) .  (2.12) 

Since x -a = -f(y) near the point (a, 0 ) )  we have 

(2.13) 
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and the boundary condition (2.8) can be written as 

Qx +f’(Y) @Y = 0, (2.14) 

when X is given by (2.13). Furthermore, the local convexity of S near the surface 
ensures that @ ( X ,  Y) is analytic on the line X = 0, Y > 0, so that CD, and @= 
may be expanded as Taylor series with respect to X ;  thus for Y > 0 

O X ( X ,  Y )  = @X(O, Y)+XO,,(O, Y ) + g x 2 @ x X ~ ( o ,  Y ) +  ..., (2.15) 

with a similar expansion for QY. On substituting (2.15) and (2.13) into (2.14) and 
expanding for small B ,  it is found that 

(2.16) 
a 

Ox + eN-1-2  (NYN-lQy - Y”QXX) + o(@-1) = 0, 
N !  

evaluated on the plane X = 0. 
The problem for the right inner potential @ ( X ,  Y )  is therefore 

with 

QXX+OFY = 0 ( X  > 0, Y > O),  

@+@>, = 0 ( X  > 0, Y = O), 

(2.17) 

(2.18) 

together with the boundary condition (2.16) on X = 0. 

outer extremity of this inner region, i.e. 
At infinity, the formula (2.9) requires an outgoing scattered wave train a t  the 

(2.19) @ N exp(- iX- Y ) + a e x p ( i X -  Y+2ia/e), 

plus a wave-free potential; the wave-free term need not be small as 

R = (X2+ Y2)& -+ 00, 

since the validity of the inner potential is ensured only near x = a. 
The precise form of the asymptotic development of the function @ as e -+ 0, 

and the h a 1  specifications regarding the behaviour of Q at large R are to be 
determined by matching with the outer potential. 

In the left inner region, within a small fraction of a diameter 2a from the end 
(x ,  y) = ( -a, 0), the co-ordinates are rescaled by the similar transformation 

x = -U-€X1, y = BYl, (b(x,y) = Y(X,,Y,), (2.20) 

(az/ax;+a2/aY;)Y = 0 ( X ,  > O,Y, > 0) (2.21) 

with Y!+YFl = 0 ( X ,  > O,Y, = 0 )  (2.22) 

and the problem for the left inner potential Y! is given by 

yX, + +--l P 2 ( M  Yy-’Y!y1 - Y ~ Y x l ~ l )  + . . . = 0 (2.23) 
M !  

and 

when X ,  = 0. At this side of the obstacle there are only outgoing waves, so that 

Y N !F exp { i X ,  - 5 + i2a/e} (2.24) 

plus a wave-free potential, as R2, = X;+ Y2, -+ 00. 



Radiation and scattering of short surface waves. Part 2 135 

According to formulae (2.9) and (2.10), the wave trains (2.19) and (2.24), valid 
in the first instance only within the two inner regions, continue without change of 
amplitude towards x = & co. Thus the surface wave region, many wavelengths 
from the ends, is completed by adding to our outer potential g(sjq5, the wave 
trains (2.19) and (2.24). The matching of outer and inner potentials q5 and CD 
and YP therefore concerns only the wave-free parts of 0 and YP. 

The matching procedure, and the notation used to describe this process, is 
the same as that described in part 1. Thus qJm) denotes the outer expansion of q5 
up to terms of order em, and q5(mpn) is the function obtained by writing q5(*) in terms 
of the right inner variables ( X ,  Y )  and expanding for fixed ( X ,  Y )  up to terms 
of order en. Likewise, @(n,m) denotes the wave-free part of the potential @ ( X ,  Y 
expanded to order en, written in terms of outer variables (z, y) and expanded to 
order em. Our matching principle is that 

q5hn) @n,m) (2.25) 

for any m and n chosen at  our convenience. 
Matching at  the other end ( -a, 0 )  is described by the notation 

$(m, n) y ( n ,  m) (2.26) 

where $(m,n) is the mth-order outer potential qW written in terms of the left inner 
variables (Xl, Y1) and expanded to order en, and similarly for Y(n,m). 

A justification for the matching principle symbolized by the notation of 
formulae (2.25) and (2.26) is presented by Crighton & Leppington (1973). 

3. First-order estimate of the transmission constant 
Right inner region 

The procedure described in principle in $ 2  is now carried out in detail to  provide 
an asymptotic estimate for the potential in the whole fluid region. Of particular 
interest, is an asymptotic evaluation of the transmission constant 5?. 

Our starting point is the observation that the incident wave will be almost 
totally reflected as E -+ 0, since the obstacle appears almost like a vertical wall 
in this limit; the boundary condition (2.16) becomes QX = 0 when s = 0. Thus 
for the right inner potential CD, we tentatively pose the first approximation 

CD N CDo(X, Y )  = (e-ix+eix)e-Y, (3.1) 

hence ii - exp ( - 2ia/e) (3.2) 

to this order. If a different scattered potential were tried, with a different order of 
magnitude from the incident wave, it would be found that it could not be matched 
to any outer approximation (for a similar discussion see part 1); thus (3.1) is 
the only possibility. 

Since CD, has no wave-free term a t  all, there is no contribution to match with 
an outer expansion. Now the form of the bounda,ry condition (2.16) suggests that 
CD has the development 

(3.3) @ N D(N-1) = @,+g"-lCD1, 
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and substitution into formulae (2.16)-(2.19) leads to the followil1g problem for 
the harmonic function O1: 

@l+@lp = 0 ( X  > 0, Y = O ) ,  (3.4) 

2% OlX = NI (NYN-1- YN)e-y ( X  = 0, Y > 0). (3.5) 

I n  addition, Ql must satisfy an outgoing wave condition 

a1 - Alexp(iX- Y) as X+co.  (3.6) 

The possibility of additional wave-free terms, such as the eigensolution Y - 1 
satisfying the homogeneous boundary con.ditions, cannot be ruled out a t  this 
stage. Furthermore, the form of the expansion (3.3) needs some justification, 
since there might be intermediate terms of the form g(e) &, with 1 9 g(e) $ eN-l. 
Such additional functions would have a homogeneous condition in place of (3.5), 
and will be ruled out below on the grounds that they would be large at  infinity 
and unmatchable to any outer expansion. 

Turning now to the problem (3.4)-(3.6) for Ql, this is a classical wave-maker 
problem whose solution can be expressed as 

Ql(X, Y )  = 2IOm G(0, Y’; X, Y )  QlX.(O, Y’) dY‘, (3.7) 

where QlX is given by ( 3 4 ,  and G is the fundamental Green’s function given by 

2G(X’,Y’;X,Y) = -2 i exp{ i~X’ -X~- (Y‘+Y)}+- - log  1 
((X’-X)2+(Y’- Y)2 

2n- (X’-X)Z+(Y’+ Y)2 

O‘ tcos ( Y  + Y’)t -sin ( Y  + Y’)  t 
e-lx’-xlt dt. (3.8) 

1 + t 2  

An alternative, but equivalent form for G is given by Ursell (1961). 

face wave contribution 
On substitution into (3.7) the first term in the expression for G yields the sur- 

a1 - -iaN2-N+lexp (iX - Y )  as X + co, (3.9) 

which combines with formulae (2.19) and (3.3) to show that the reflexion con- 
stant has khe form 

B N (1  - ieN-1aN2-N+1) exp ( - 2ia/e). (3.10) 

I n  order to match our left inner approximation (D - WN-l) with an appropriate 
outer expansion g(e) q&, we need some information about the form of a1, at large 
values of R = (X2+ Y2)4. Setting X = 0, we have 

Y ‘ -  Y tcos(Y+ Y’)t-sin(Y+ Y’)t 
1 + t 2  

together with the exponentially decreasing wave term (3.9). 
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The double-integral term can be simplified by performing the Y' integral first, 
whence it is readily seen. that its contribution to Q1 is of order Y-2. The main 
contribution, of order Y-1, arises from the logarithmic term, which can be recast 
as a Cauchy principal value integral, by partial integration, to give 

with the substitution Y' = Yt.  Finally, the use of Watson's lemma shows that 

@.,(O, Y )  N 4aN/nY as Y +- co. (3.11) 

On using the information that cPlx(O, Y )  is exponentially small for large Y ,  
it follows that the general far-field form for the harmonic function Q1 ( X ,  Y )  is 
given by 

(3.12) q ( X ,  Y )  N -N- as R-tco, 

together with the surface wave (3.9), where (R,  8) are given by X = R cos 8 and 
Y = R sin 8. 

Outer region 

Leaving aside the surface wave trains, the right inner approximation 

4a sin8 
n R  

0 N Q(N-1) = @o+$-l@l 

is now rewritten in terms of the outer co-ordinates (6, O), where 

6 = sR = {(x-a)2+y2}* 

is the distance from the end (a, 0) and is shown in figure 1. Expanding to order E ~ ,  

with 6 fixed, we get 

(3.13) 
4a sin8 
n 6 '  

@$"LA') = $A- 

in the notation described at the end of $2. Now our matching principle 

@N-1, N )  = $0" N-1) (3.14) 

requires the outer expansion $ to be such that 

$ N $(N = gN $0, (3.15) 

where the harmonic function $., is to vanish a t  infinity and is seen from (2. I I )  and 
(3.13) t o  satisfy the conditions 

a$,/an = 0 on S ;  $., = 0 for y = 0,121 > a, (3.16) 

(3.17) 
4a, sin e and $ O # , T  as 6+0.  

We now denote by c$., the harmonic function that satisfies (3.16) together with 
the normalized singularity condition 

$., N 6-1sin8 as 6 + 0 ,  (3.18) 
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with $,$nite a t  the other end x = -a ,  and $o = 0 at infinity. It is clear that 

Qo = 4aNT-1$0 (3.19) 

is a possible solution for the outer potential Qo. Other eigensolutions, that could 
be added to (3.19), would necessarily have singularities a t  x = --a, and will be 
shown to be inadmissible in due course. The function $o depends on the precise 
geometry of the scatterer 8; if# is imagined to be reflected in the x axis to obtain 
a closed cylinder, then $orepresents the potential due to a dipole at (a, 0) ,  directed 
along the tangent to the fixed cylinder, in an unbounded fluid. 

I n  view of the finiteness of $,, a t  ( -  -a, 0 )  and the boundary condition (3.16), 
i b  is readily seen that the function must take the form 

J0 = &,sin O,+o(S,) as Sl + 0 ,  (3.20) 

near ( - a, O),  where 62, = (x + -a)z +y2 and 8, are as shown in figure 1. The constant 
A = Qou( -a, 0 )  obviously depends on the shape X. 

Our development of the left inner potential and an asymptotic estimate for the 
transmission constant requires only a knowledge of the constant A that appears 
in formula (3.20). This constant will be evaluated for some particular geometries 
in $4, and for the moment we simply assume that &, and hence A ,  is known. 

h 

Left inner region 

The outer approximation Q - Q“) = eNQO is seen from (3.19) and (3.20) t o  have 
the form 

Q ( N )  = eN(4a,n-1AS,sin81+o(S,)) 

near the end ( - a, 0). When this is rewritten in left inner variables (Rl, O,), where 
Sl = eR1, R2, = X2,+ Yt ,  and expanded to order eN+l, we get 

$(NjN+l)  = eN+lA4a,n-1R, sin O,, (3.21) 

an(l. the matching requirement $(~v,~+1) = Y?(iV+l,iv) dictates the left inner 

(3.22) 

According to (2.21)-(2.24) and (3.21), the function Y!,(X,, Yl) is harmonic for 

Y J ~ ~ ,  = o (x, = 0 ) ;  ~ro+you, = o (Y, = 0 1 ,  (3.23) 

with Yo N A 4 7 r - k ~ ~  R, sin 8,, (3.24) 

plus an outgoing wave, as R, -+ 00. I ts  solution is 

X ,  > 0 and Y, > 0, and satisfies the conditions 

Yo = A4n-4%v(Y1 - 1). (3.25) 

At this stage it is possible to justify some earlier assertions that were made 
without proof. The fact that Qo, given by (3.19), can have no singularity at x = -a 
follows by considering the consequences of such a singularity. For the boundary 
conditions (3.16) satisfied by the harmonic function Qo imply the edge behaviour 
Qo = O(SPn sinno,), n odd; if the sign were negative, then the left inner potential 
would have the form Q - S”-~Z\T: in place of (3.22), and we would require the 
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condition Y$ N CR;" sin no, plus an outgoing wave as R, --f co, in place of (3.24). 
Since all inner functions have to be finite at the origin, there is no such solution 
apart from the trivial one C = 0, Y: = 0. 

Similar arguments rule out the possibility of an intermediate term g ( E )  @:, 
in the expansion (3.3) for the right inner region, and the possibility of an additional 
wave-free term @;, in the specification (3.6) for @,. For in either case, the addi- 
tional function would satisfy a homogeneous condition @& = 0 on X = 0, whence 
@: = O(R), or larger, at  infinity; for example, @: = Y - 1 is one such term. The 
matching near (a, 0) would therefore lead to a potential q50 = 0(6), or smaller, and 
a non-trivial solution for q50 would have to be singular a t  x = -a. But this has 
been shown above to be inconsistent with respect to matching with an outgoing 
wave function Y near x = - a, and therefore 0; = 0. 

Since the leading term Yo, given by (3.25), is wave-free, an estimate for the 
transmission constant requires a higher order estimate for Y. The boundary 
condition (2.3) suggests a term of order  EM+^, but we cannot rule out an inter- 
mediate term, and pose an expansion 

Q, N Y(N+Jf) = sN+?ro + g ( E )  Yl + f?V+MY,. (3.26) 

The gauge function g(e) lies asymptotically between eN+l and eM+N, and is to be 
found. There could be several such terms, and g(E)Y, is taken to represent a 
typical term. 

Each of the harmonic functions Y1 and Y, satisfies the surface condition (2.22) 
and a radiation condition like (2.24). Substitution into (2.23) reveals the final 
conditions 

Ylxl = 0 when X ,  = 0 (3.27) 

and y2x1 = -- - aNpM YY-l when X ,=0 .  
77 (M-l)! (3.28) 

The specifications forYlandY,are completed in principle by matching with the 
outer expansion to ascertain the correct behaviour for these functions a t  large R,. 
This will not be carried out here since our main interest is with the wave trains 
associated with the left inner potentialy ; it is noted here that theeigenfunctionY, 
is wave-free on account of the homogeneous condition (3.27). As for the potential 
Y,, it isfound from theidentity (3.7),withX, Y and @,replaced byX,, Y,andY,, 
that the surface train due to (3.28) is given by 

= 8A i7r-l a, pM exp (iX, - Y,) , (3.29) 

for large R,, plus a wave-free term. The formula (3.7), withY, instead of @,, is 
not strictly valid with Y, large at  infinity, on account of convergence difficulties 
associated with the wave-free terms. The exact solution for Y, can readily be 
found, nevertheless, by subtracting out suitably chosen wave-free potentials, 
g M ,  gM-,  . . . , defined as 

gzm = (1/2m) ( - l ) m + l  {R:m sin 2m0, - 2mRim-l cos (2m - 1) S,), 
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gZm+, = (m + g)-l n-l( - {R2;n+l(siii (2m + l )8 ,  log R, + 0, cos (2m + 1)8,) 

- (2m + 1 )  R:m (00s 2m0, log R, - 8, sin 2m0,) - R2," cos 2m0,). 

The functions gn are harmonic in the quarter-space 0 < 8, < in, satisfy the free- 
surface condition on 8, = 0, and have been chosen so that 

ag,/ax, = YT-l- (n- I )  Y;"-2 on X ,  = 0, Y ,  2 0. 

It is easy to see that the prescribed normal velocity (3 .28)  on the vertical 
plane can be successively reduced to  YfI-,, YF-3, ..., 1,0, by adding suitable 
multiples of the potentials g,, g,+,, . . . , g2,  g,. Since g, has alogarithmic singularity 
a t  the origin, this must be removed by adding an appropriate multiple of thefunda- 
mental source potential G, formula (3 .8 ) ,  since Y, must be finite a t  the origin. Thus 
we get a solution 

y 2 -  (3.30) 

to which may be added a combination of the eigenfunctions 

RY sin me, - mR7-l cos (m - 1) 8,) 

Reference to formula (3 .8 )  shows that the wave train (3 .29)  is verified. 
It has been remarked before that (2.10) ensures the continuation of the wave 

train (3.29) along the free surface to x = - co. Thus on being rewritten in terms of 
the natural variables x and y, formulae (3 .29)  and (3.26) show that 

m odd. 

$ - T"exp{-i(x-a)/e-y/e) as x+ -a, 

where P - ~ ~ + ~ ~ 8 A i n - l  a,v/31cl exp ( - 2ia/e) as e + 0. (3.31) 

Before providing explicit values of A for particular geometries, we note that 
(3 .31)  is consistent with the general result P = O(e4), predicted by Ursell (1961) 
for any shape S ,  with N = M = 2 ,  that has finite radius of curvature a t  each end. 

The symmetry of formula (3 .31)  with respect to M and N is also consistent 
with the general requirement that be the same for incident waves from either 
direction. I n  this connexion it is noted that the constant A,  which represents the 
tangential velocity a t  ( -a,  0 )  due to a dipole a t  ( +a, 0)) is also equal to the velo- 
city at  ( + a, 0 )  due to a dipole at  ( - a, 0). 

4. Special cases : circle, ellipse and circle with vertical keel 
The estimate (3.31) for the transmission constant 5? requires an evaluation of 

the constant A for a particular geometry S. Explicit results are given here for the 
cases of a half-submerged circular cylinder, elliptic cylinder, and circular cylinder 
with a vertical keel. 

Circular cylinder 

For a half-immersed circular cylinder the boundary S is the semi-circle 

x,+y2 = a2, y > 0. 

The harmonic function r$o satisfies the boundary conditions 

J0 = 0 (y = o,IxI > a ) ;  a$&r = o ( r  = a) ,  (4 .1 )  
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with $o-&-1sin8 as & 2 =  (x-a)2+y2-+O, (4.2) 

$o finite at ( -a,  0 )  and $o = 0 a t  infinity. The problem can be dealt with by the 
method of conformal transformation and has the solution 

r$o = 6-1 sin e = g ( i / 2 a )  ( z  +a)  / (z  - a), 

$,, N (4a2)-1&, sin e,, 

(4.3) 

where z = x + iy. Near the end (x, y) = ( -a, 0) we write z = -a  - &le-isl and ex- 
pand for small &, to get 

and a comparison with (3.20) shows that A = (4a2)-l for the semi-circle. Since S 
has radius a, we have M = N = 2 and a2 = PZ = l / a ,  and formula (3.31) shows that 

(4.4) 

P N (e/a)4 (2i/n) exp ( - 2ia/e). (4.5) 

This is in agreement with the result proved rigorously by Ursell(l961) (when 
account is made of a sign error in formula (6.1) of that work, which leads to the 
wrong sign for the transmitted wave). 

Ellipse 

If S is the semi-ellipse ( x / u ) ~ +  (y/b)2 = 1, y > 0, then $o can again be calcu- 
lated exactly, using the Joukowski transformation 

6 = 2 + ( 2 2 - d + 8 2 ) 4  (4.6) 

to map the ellipse onto a circle of radius a + b; the square-root function is positive 
for x > (a2 - b2)* and has a straight cut from z = - (a2 - b2)4 to + (a2 - b2)9. I n  
terms of 6, the solution is 

$o = =@(i/2b) (Y+a+b)/(c-a-b). (4.7) 

Expanding about the point z = -a,  6 = -a  - 6 ,  leads to the conclusion that 
A = (4b2)-I; the ellipse has M = N = 2 with curvatures a2 = P2 = a/b2, whence 

2i  a2e4 
rr b6 P N - - exp ( - 2ia/e). 

Circle with vertical keel 

Here S consists of the semi-circle 1x1 = a, y > 0, with a straight line from 
x = ia to z = ib. This shape can again be reduced to a circle, of radius (a2 + b2)/2b, 
by the transformation 

a 2  
2g=  ( z2+-+- ;: b4;a4)i + z - - ,  z (4.9) 

with cuts from ia2/b to ib  and from - ia2/b to - ib. The solution for $o is given by 

go = 2Zib/(a2+ b2) {(2bg+ b2 + a2)/(2b5- b2 - a”,>, (4.10) 

from which it is found that A = b2/(a2 + b2)2 and 

N e4(8i/n) (b/a)2 (a2 + b2)--2 exp ( - 2ia/e). (4.11) 
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Higher order approximation for the circle 

It is straightforward, in principle, to achieve higher order approximations 
for the circular geometry. Matching considerations require outer and inner 
expansions of the form 

4 N ~ ~ q 5 ~  + e3 log €4, + E ~ $ ~ ,  

(D - €@,+€2@,, 

ir - 
with Yo = 7r-l (R, sin 8, - 1) andY2 given as a special case of (3.30). The matching 
procedure yields the information that Y, = - (4/n)Y0, and hence that 

y 4  = - (4/??)Y?2 

apart from wave-free terms. It follows that T' has the improved estimate 

T' = exp ( - 2 i a / ~ )  (2i/7r) ((e/a)4- (4/7r) (+)510g (a/.) + 0(+)5). (4.12) 

5. The radiation problem 
In  the related radiation problem, there is no incident wave, and the motion 

is produced by a prescribed time-harmonic normal velocity on S .  Details are 
given here for the case in which S undergoes a heaving motion of downward 
vertical velocity a( V e - i w t ) ;  this problem has been discussed previously by Ursell 
(1953), Rhodes-Robinson (1970a, 6,1972) and Holford (1965). The velocity 
potential 92(q5(x, y) e-iut) is harmonic, finite at the intersection points ( Ifr a, 0) 
and satisfies the boundary conditions 

q 5 + ~ $ ~  = 0 for y = O,Ix( > a, (5.1) 

aq5/an = Vj.n on S ,  ( 5 . 2 )  

q5 N A*exp(+ix/E:-y/c) as x -+  kco. (5.3) 

The unit vectors n and j denote the outward normal from S ,  and the downward 
vertical direction. 

In the outer region, many wavelengths from the surface, a first approximation 
$ N q50 is specified by setting E = 0 in condition (5.1). Thus 

q50 = 0 for y = 0, 1x1 > a;  aq5,/an = Vj.n on S, (5.4) 

and $o vanishes a t  infinity. The addition of appropriate surface wave terms to q50 
will subsequently allow the outer approximation to cover the whole fluid region 
except for a few wavelengths from the ends. 

The two inner regions, within a fraction of a diameter 2a from the ends ( a, 0 ) ,  
are dealt with by resealing the variables according to formulae (2.12) and (2.20). 
In  the right inner region, the boundary conditions (5.1) and (5 .2 )  become 

@ + c D , = O  for X > O ,  Y = O ,  (5.5) 
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a, 
( N  - I ) !  

=eNV-YN-l+ ... when X = O ,  (5 .6)  

where the coefficient a, is given by (2.2); the other inner region has a boundary 
condition obtained from (5.5) by changing X, Y ,  @, N and a, toX,, Y,,Y, Mand 

Turning first to the outer approximation 40, this function, specified by (5.4), 
will depend on the geometry S and is assumed known for the moment: it will 
later be written down explicitly for the case when S is a semi-circle. Of particular 
importance is the behaviour of this potential near the ends ( ? a, 0 ) ,  for this will 
dictate the form of the two inner expansions. The boundary conditions (5.4) 
imply that q50 has the local behaviour 

P M .  

$o = AVVGsinO+o(S) as 6- t  0 ( 5 . 7 )  

near the end (a, 0) ,  in the local co-ordinates (6,8) of figure 1; the constant 

A = V-1(i50y(a,0) 

depends on the geometry of the system and is assumed known. 
Rewriting (5.7) in terms of the inner co-ordinates (R, 0)  with S = ER we have 

qYO, l) = A Ve R sin 8, 

and this suggests an inner expansion 

a N €(Do (5 .8 )  

with Qo N AVRsin8 as R --+ co, (5.9) 

together with outgoing waves. 
On substituting (5.8) into (5 .5 )  and ( 5 . 6 ) ,  the problem for the harmonic function 
is completed by the speoifications 

= 0 (X = 0); @o+a)op = 0 ( Y  = O ) ,  (5.10) 

and its solution is the wave-free potential 

Q o = A V ( Y - l ) .  (5.11) 

Now the boundary condition (5.6) suggests a higher order expansion 

a - @") = EQo + g ( E )  o1 + €NO,,, (5.12) 

where the function g(a )  is to be ascertained by matching with the outer solution; 
there may be several such terms, all symbolized by the single intermediate 
expression g(e) Q1. 

Each of the constituent potentials of expansion (5.12) is harmonic and satis- 
fies the surface condition (5.5). Substitution into the remaining condition (5.6) 
shows that 

(5.13) 
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when X = 0. The eigenfunction 0, is a combination of the functions 

Rn sin n8 - nRn--l cos (n - 1) 0, 

with n odd and n < N ;  it  is wave-free and of little interest in the present analysis. 
The coefficients associated with the functions that make up would be deter- 
mined by matching. 

As for 0D2x, it is seen from (3.28) to be proportional to the function Y, that has 
been described in 5 3. In  particular then, we have 

O2 N -2 iV( l  -A)aNeix-Y as X --f co. (5.14) 

Now the smooth matching of inner and outer regions is completed by con- 
tinuing the wave train (5.14) to x = co. Thus from (5.12), (5.14) and (2.12) we 
get q5 - A ,  exp {(ix - y)/s}, where 

A ,  N - 2isNV( 1 - A )  aN exp ( - ia/s), (5.15) 

and a similar expression can be written down immediately for the analogous 
constant A_, on replacing sN( 1 - A )  a, exp ( - ia/e) by EM( I - A,) PM exp (ia/e) 
with A,  = V-l q50u ( - a, 0). 

Discussion of results 

The amplitude constant A+ depends upon the value of the constant l - A ,  
which gives a measure of the tangential speed of the fluid a t  (a,  0) relative to that 
of S. If q50 is written as q50 = V(y- @), then @ gives zero normal velocity on the 
closed cylinder S, made up from S and its image in the x axis. It is easy to see 
that ~ is the potential due to a steady stream of unit speed approaching S, from 
y = - co, and the constant 1 - A  is the slip velocity at (a,  0) due to such a flow. 

If S is the semi-circle of radius a, then N = 2 and aN = l/a. The potential q5,, 
is given exactly by 

$0 = -aVy/(X2+y2),  (5.16) 

so that A = - 1, and formula (6.15) becomes 

A ,  N - 4i( V / a )  s2 exp ( - ia/e), (5.17) 

in agreement with the result proved rigorously by Ursell(l953). 
The general result (5.15) can also be compared with those due to Rhodes- 

Robinson (1970a, b, 1972) for N = 2 and N = 4. If N = 2, so that S has finite 
radius of curvature at  (a ,  0), the potential q50 is analytic near this point and can be 
expanded in the form 

V1$,, = YP(A(z-u)+B(z-u)~+C(Z-U)~+D(Z-U)~+ ...I, (5.18) 

with A ,  B, C and D real and z - a = Seie. Now the boundary condition ( 5 . 2 )  can 
be written as 

$o,+f'(Y) q5ou = W Y L  (5.19) 

when (5.20) 
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Substitution of the local expansion (5.18) into (5.19) yields the identity 

VLX,(I-A) = 2B = q50,,(~,0), (5.21) 

and the general expression (5.15) can be rewritten as 

A ,  - - 2is2 q5029/ (a ,  0) exp ( - ia/s) ,  (5.22) 

which is in agreement with the result obtained rigorously by Rhodes-Robinson 
(1970u, b, 1972) for the ease of finite depth. The extension of the present analysis 
to finite depth is discussed in 3 6. 

Similarly, if N = 4, the expansion (5.18) can be substituted into the boundary 
condition(5.19)tofindB = Oand Va,( l -A)  = -4!D = +q5,,,,(a,O).Thus 

A ,  - - 2 i ~ ~ ~ ~ ~ ~ ~ ~ ( a ,  0) exp ( - ia/s) ,  

in agreement with the result proposed by Rhodes-Robinson (1970a). 

then q50 has the local form, 
The expansion (5.18) is not valid if N is odd, however. If N = 3, for example, 

V-1 q5, = Y{A ( x  - a)  + B(z - a), + C(z - a)3 log ( z  - a )  + . . .>, 
with the constant A related to the coefficient C of the non-regular logarithmic 
term; this accounts for the difficulty described by Rhodes-Robinson (1970a) 
for the case N = 3. The formula (5.15) seems to provide the simplest expression 
for A, in all cases. 

6. Generalization to finite depth 
If the fluid is of finite depth h,, then the scattered wave trains (2.9) and (2.10) 

and the radiated wave trains (5.3) have the modified wavelength parameter el, 
in place of E ,  where 

In addition q5 satisfies the condition q59/ = 0 when y = h,. If h, is large compared 
with s, then el is approximately E (1 - 2 e-hlie) and differs from s by an ex- 
ponentially small term. Thus the modification to the surface wave trains is 
asymptotically negligible except at  very large values of x. 

The modifications to the present method to deal with finite depths are very 
simple. The outer potentials $, and q5, obviously have the boundary conditicn 
q5,JO, h) = 0, in place of the previous requirement that $,-, -+ 0 a t  infinity. Each 
inner potential is obtained as before; the finite depth makes its presence felt 
only through a modification to the scale constant A,  given by (3.20) for the scat- 
tering problem and by (5.7) for the radiation problem. Finally, the surface wave 
trains, launched from the outer extremities of the inner regions, are continued 
over the surfaces towards x = & 00, with E replaced by el, to obtain uniformity 
for very large values of x. 

If the depth h(x) is locally variable, with h -+ h, as x -+ co and with h(x) 9 E 

for all x, then the analysis will go through with little modification. The wave 
trains(2.10)and (5.3)havesreplacedbyeI, wheres = ~~co th (h~ / s , ) ,  withPandA, 
given by (3.31) and (5.15) as before. In each of these formulae the scale constant 

E = E ,  Goth (hl/c,). (6.1) 

10 FLM 59 
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A will account for the finite depth, through the condition a$,/an = 0, when 
y = h(x) ,  on the outer potentials 4, that determine A .  

In particular, taking N = 2 in the radiation problem, it is asserted that the 
result (5.22), proved rigorously by Rhodes-Robinson (1970a, b,  1972) for finite 
depth, is valid for locally variable depth, for cylinders that need be smooth only 
within a neighbourhood of each end. 
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